# Splinterfields: Mathematickal Arts #3

A third and final update on the Mathematickal Arts Workshop – following the previous outline, some more detail on the process of going from software to textile using plain weave.

First create a program and choose the colours:

Axiom: O
Rule: O => : O O :
Repeat 5 generations

: = Green
0 = Orange

Then “compile” the code to expand the pattern:

1= O
2= : O O :
3= : : O O : : O O : :
4= : : : O O : : O O : : : : O O : : O O : : :
5= : : : : O O : : O O : : : : O O : : O O : : : : : : O O : : O O : : : : O O : : O O : : : :

The resulting weave can be previewed in ASCII as described earlier. This was useful to discover the range of patterns possible. When done, install the compiled code on the loom as a warp thread colour sequence.

Then you follow the same sequence for the weft threads, choosing the colour based on the code generated. In this way you become a mere part of the process yourself.

This is another, more complex program with 2 rules. This expands rather quicker than the last one, so only three generations are required:

Axiom: O
Rule 1: O => O : O :
Rule 2: : => : O :
Run for 3 generations

This technique draws comparisons with Jacquard looms, but obviously it’s far simpler as the weave itself is the same, we are only changing between 2 colours (and a human is very much required to do the weaving in this case). However, one of the activities I would have tried with more time available would have been reverse engineering Jacquard woven fabric – to attempt to decode the rules used.

During the workshop it was also suggested that a woven quine may be possible – where the pattern somehow contains the instructions for it’s own manufacture.