Category Archives: Flotsam

Picademy Exeter and Future Thinking for Social Living

Last week I had the chance to help out the Raspberry Pi foundation at their Picademy in Exeter. It was good to meet up with Sam Aaron again to talk livecoding on Pis, and also see how they run these events. They are designed for local teachers to get more confident with computers, programming and electronics to the point where they can start designing their own teaching materials on the second day of the two day course. This is a model I’m intending to use for the second inset teacher training day I’m doing next week at Truro school – it’s pretty exciting to see the ideas that they have for activities for their pupils, and a good challenge to help find ways to bring them into existence in a day.

IMG_20150605_141147

We also had the ending of Future Thinking for Social Living at the Miners Court summer party last week. We exhibited the map made during the workshops, made lots of tea, and had some fun with the pattern matrix in musical mode out in the garden – I adapted Alex’s music system we used with Ellen in Munich to run on Raspberry Pi so it didn’t require a laptop, or a screen at all – simply a speaker. It was interesting how quickly people got the idea, in many ways music is easier to explain than weaving as listening while coding is multi-sensory.

IMG_20150603_151747

Weavecoding Munich

Ellen’s exhibition in Munich was always going to be a pivotal event in the weavecoding project – one of the first opportunities to expose our work to a large audience. The Museum of casts of classical sculptures was the perfect context for the mythical aspects of weaving, overlooked by Penelope and friends with her subversive woven/unwoven work, we could explore the connections between livecoding and weaving.

IMG_8477 2

Practically we focused on developing the tangible weavecoding exhibit for events later in the week, as well as discussing the many languages we have developed so far for different looms and weaving techniques. One of our discoveries is that none of the models or languages we have created seem sufficient in themselves – weaving could be far too big to be able to be described or solved from a single perspective. We’ve tried approaches describing weave structures from the actions of the weaver, setup of the loom and structure of the fabric – perhaps the most promising is to explor the story of weaving from the perspective of the thread itself.

IMG_20150510_062737

IMG_20150508_153211

One of the distinctive things about weaving in antiquity is how multiple technologies were combined to form a single piece of fabric, weaving in different directions, weft becoming warp, use of tablets vs warp weighted weaving. To explain this via the path of a single conceptual thread crossing through itself may make this possible to describe in a more flexible, declarative and abstracted manner than having to explain each method separately as if in it’s own world.

IMG_20150508_152045

IMG_20150509_100421

The pattern matrix has now been made into good shape for explaining the relationship between colour and structure in pattern formation. For the first time we also used all 4 sensors per block on the bottom row which meant we could use a special “colour” block that the system recognises from the normal warp/weft ones and use it’s rotation to choose between 8 preset colour settings. This was quite a breakthrough as it had all been theoretical before.

IMG_20150508_194220

Adding this more complex use of the magnetic patterns meant that Alex could set up the matrix as a tangible interface for his tidal livecoding software meaning Ellen could join us for a collaborative slub weavecoding performance on the Saturday evening. The prospect of performing together was something we have talked about since the very beginning of the project, so it was great to finally reach this point. The reverb in the museum was vast, meaning that we had to play the space a lot, and provide ‘music for looking at sculptures by’:

Tangible programming: detecting flip, rotation and id with magnets

When we started designing the pattern matrix we wanted to include the possibility of encoding more than binary (which side is up) using the magnets. In order to test this, we made the bottom row of sensors with 4 in a square – the rest only have one sensor currently (to avoid blowing the budget on hall effect sensors).

Here are some test blocks with four magnets glued on. The one at the back is easy to make as they naturally snap together edge to edge in this pattern, the closer one required superglue and lots of patience – I’m still expecting it to fire a magnet off unexpectedly at some point:

IMG_20150429_153706

The orientation seems to work well in our tests so far, as you rotate the blocks the sensors latch from one state to the other – and it seems like they stick to their previous reading until the block is very nearly aligned straight. I’ve added some sound on the Pi to give some haptic feedback which is turning out to be very useful.

The next job was to head back to makernow make some better blocks with the magnets inside. Oliver Hatfield milled out new holes in some of our spares:

IMG_20150501_114719

Luckily the fit is really tight so with some force the magnets can be placed inside without the need for any gluing – and they don’t rattle around at all:

IMG_20150501_115947

The next thing was to make some visual indication of the polarity and meaning of the patterns, and show how the binary encoding changes with flipping and rotating. Andy Smith designed and laser engraved these new caps and locating rings:

IMG_20150501_180731

The 4 bit binary codes read in clockwise order from the top left (same as the notation for tablet weaving) so rotation causes the same effect as bitwise rotate in programming – multiply/divide by 2 with overflow. There are 4 possible different configurations of magnets (which can provide block identification). Two of the configurations are mirrored on both sides but you can read rotation still, with the other two you also can tell which side is up, and one – bottom left in the photo below, can represent 8 states all by itself (flip as well as rotate).

In future we’ll make more of these with specific meanings dependant on the language we use them for and what they actually do – at this point they are for debugging/experimenting further.

IMG_20150502_124856

Pattern matrix – putting it together

Here is a member of staff at Miners Court trying some tangible weave coding in the midst of our crafts area – at the moment it’s simply displaying the weave structure on the simulated warp weighed loom with a single colour each for warp and weft threads, the next thing is to get ‘colour & weave’ patterns working.

DSC_1064

The pattern matrix is the second generation of tangible programming device from the weavecoding project. It’s been built as an open hardware project in collaboration with Falmouth University’s Makernow fablab, who have designed and built the chassis using many 3D printed parts and assembled the electronics using surface mount components (far beyond my stripboard skills).

Here you can see the aluminium framework supporting the AVR based row controller boards with the Raspberry Pi in the corner. The hall effect sensors detect magnetic fields – this picture was taken before any of the wiring was started.

IMG_20150408_105446

The row controllers are designed to read the sensor data and dispatch it to the Raspberry Pi using i2c serial communication running on their atmega328 processors. This design was arrived at after the experience of building flotsam which centralised all of the logic in the Raspberry Pi, resulting in lots of wiring required to collect the 128 bits of information and pass it to the GPIO port on the Pi. Using i2c has the advantage that you only need two wires to communicate everything, processing can be distributed and it can be far more modular and extendible in future. In fact we plan to try different sensors and configurations – so this is a great platform for experimenting with tangible programming.

This video shows the current operation of the sensors and row controllers, I’ve programmed the board with test code that displays the state of the magnetic field with the status LED, making sure that it can tell the orientation of the programming block:

The row controllers have a set of multiplexers that allow you to choose between 20 sensor inputs all routed to an analogue pin on the AVR. We’re just using digital here, but it means we can try totally different combinations of sensors without changing the rest of the hardware.

After getting the first couple of rows working and testing it with elderly people at our Miners Court residency there were a couple of issues. Firstly the magnets were really strong, and I worried about leaving it unattended with the programming blocks snapping together so violently (as we plan to use it in museum settings as well as at Miners Court). The other problem was that even with strong magnets, the placement of the blocks needed to be very precise. This is probably to do with the shape of the magnets, and the fact that the fields bend around them and reverse quite short distances from their edges.

To fix these bugs it was a fairly simple matter to take the blocks apart, remove 2 of the 3 magnets and add some rings to guide placement over the sensors properly:

IMG_20150418_114347

Future Thinking for Social Living: Weavecoding in assisted housing

Our work on weavecoding is now reaching out to other uses and projects. One is Future Thinking for Social Living, run by Magda Tyżlik-Carver and Fiona Hackney.

This research project aims to look at the relationship between wellbeing, home, making and technology and is centred on Miners Court, who provide assisted housing in Redruth in Cornwall. As well as a range of flats and accommodation, the residents have shared communal areas with a variety of activities throughout the week. Along with Christiane Berghoff, Robin Hawes and Lucie Hernandez we set up camp with a lot of materials for knitting, crochet and weaving as well as some Raspberry Pis and the all new pattern matrix tangible weavecoding device.

miners

The Future Thinking for Social Living project is set up to research how we can think more critically about home and community, and with particular focus on the future. From discussions with the staff at Miners Court – specific issues they are interested in are how to make better use of communal spaces, and how can they get more men involved with crafts and shared activities.

I’m also interested in how we can use these settings for artists residencies – how does working with people like this affect a design process, does working in such a place – and using it as way to start conversations (rather than being too much in ‘teacher mode’) affect the people living there positively? Also the weavecoding project provides some ideas in bridging gaps, both between technology and people – but also across gender gaps, mixing textiles with electronics for example.

miners2
Here is the new magnetic pattern matrix, running the 3D Raspberry Pi warp weighted loom simulation (more on this soon!) with a nice 4 shaft loom in the background.

On Monday and Tuesday we spent a long time talking, weaving, knitting and making cups of tea of course (and a bit of time debugging magnets on my part). I’ve found helping people weave with tablets on the inkle loom is a good way to get talking, as this seems new to even people who are experienced with crafts. It also appeals to people with mathematics or design background who normally are uninterested in knitting and other crafts, and seems gender neutral perhaps for the same reasons. It also helps to talk about the history of what we are weaving with, the fact that this is an ancient technique and yet there are so many surprises – I can’t really predict to them what will happen e.g. to the pattern when we change rotation direction, and this seems to be important.

What we have yet to do (but a few weeks to experiment yet) is bridge the technology gap. Many of them have an immediate reaction of distaste to computers, as most of them have them but report that they have become unusable or feel that they are not designed well with their needs in mind. Partly the situation of having some circuit boards getting tangled up in the more familiar materials and using the Raspberry Pi simulation to show what is happening on the loom next to it is a start. One interesting thing is that neither the Pi nor the AVR boards look enough like ‘a computer’ for it to stand out too much (which also part of the Pi’s role in the classroom) – this was more so after plugging it into their large TV and getting rid of the monitor. As it gradually gets into a working state, I’d like to first try using it to demonstrate well known weaves – e.g. plain, twill and satin.

Working in this environment on the pattern matrix between weaving with different people has already had an effect on it’s design process. One initial observation resulted in reducing the magnet strength – I hadn’t even considered before that having them snap together too forcefully would be a problem for some people. Such things are obvious in these kinds of settings.

Screenless music livecoding

Programming music with flotsam – for the first time, it’s truly screen-less livecoding. All the synthesis is done on the Raspberry Pi too (raspbian release in the works). One of the surprising things I find with tangible programming is the enforced scarcity of tokens, having to move them around provides a situation that is good to play around with, in contrast to being able to simply type more stuff into a text document.

The programming language is pretty simple and similar to the yarn sequence language from the weavecoding project. The board layout consist of 4 rows of 8 possible tokens. Each row represents a single l-system rule:

Rule A: o o o o o o o o
Rule B: o o o o o o o o
Rule C: o o o o o o o o
Rule D: o o o o o o o o

The tokens themselves consist of 13 possible values:

a,b,c,d : The 'note on' triggers for 4 synth patches
. : Rest one beat
+,- : Change current pitch
<,> : Change current synth patch set
A,B,C,D : 'Jump to' rule (can be self-referential)
No-token: Ends the current rule

The setup currently runs to a maximum depth of 8 generations – so a rule referring to itself expands 8 times. A single rule ‘A’ such as ‘+ b A - c A ‘ expands to this sequence (the first 100 symbols of it anyway):

+b+b+b+b+b+b+b+b+b+b-c-c+b-c-c+b+b-c-c+b-c-c+b+b+b-c-c+b-c-c+b+b-c-c+b-c-c+b+b+b+b-c-c+b-c-c+b+b-c-c

I’m still working on how best to encode musical structures this way, as it needs a bit more expression – something to try is running them in parallel so you can have different sequences at the same time. With a bit more tweaking (and with upcoming hardware improvements) the eventual plan is to use this on some kid’s programming teaching projects.

New tangible weavecoding device – pattern matrix

We’re starting construction of version 2 of the flotsam tangible programming device, specialised to weaving – and henceforth known as the ‘pattern matrix’. This will be tested during May at our upcoming performance/workshop/residency at Munich’s Museum für Abgüsse Klassischer Bildwerke (Museum of Casts of Classical Sculpture) with the Coding weaves project, and then for later use in Cornwall (more on that part soon).

1

The first thing we are exploring is removing the need for physical plugs – although I like them a lot, they are problematic for people as it takes time to learn how to align the blocks in the current prototype. In order to get around this, and maintain the cheapness of the programming blocks themselves we’re looking at using magnetism to represent information. We can use blocks with no connections, painted white and black on different sides and detect their orientation and position via a magnet in the centre.

Initially this idea came from thinking about reed switches with Francesca, and playing with mobile phone magnetometers on the UAV project led to us investigating Hall effect sensors (the building blocks of magnetometers). We had a bit of a testing workshop with Andy from the Falmouth University makernow fablab who are helping with construction of this project.

halleffect

Hall effect sensors allow us to detect the polarity of nearby magnetic fields – and seem to be restricted enough in range that they can be very precise. Even with fairly weak magnets we found we could put the sensors right next to each other (see above) and still determine the difference between two opposed or aligned fields.

For the warp/weft weave pattern structure we only need 1 bit of information to be detected, but for future extensibility for the yarn colour programming setup it’s important to be able to read more (4 bits are encoded in the flotsam blocks).

Our plan is to try putting 4 sensors in a square which adds an intriguing possibility of rotating the blocks to change their meaning, as well as flipping them. The great thing is that this gets very close to tablet weaving in terms of the notation and the actions required. We can also represent all 16 states with only 4 blocks – if negative is 0 and positive is 1, and we read the code as binary clockwise from top left:

Starting state [0,1,5,6]
- -   + -   + -   - +
- -   - -   - +   - +

Rotate clockwise [0,2,10,12]
- -   - +   - +   - - 
- -   - -   + -   + +

Horizontal flip [15,11,10,12]
+ +   + +   - +   - - 
+ +   + -   + -   + +

Rotate counter-clockwise [15,13,5,6]
+ +   + -   + -   - + 
+ +   + +   - +   - +

Vertical flip [0,4,5,6]
- -   - -   + -   - + 
- -   - +   - +   - +

Here is Andy’s design for the PCB we’ll use under each of the 25 board locations:

hallboard

Adventures with i2c

In order to design the next version of the flotsam hardware I need to make it cheaper and easier to build. The existing hardware was very cheap in terms of components but expensive in terms of time it took to construct! With this lesson learned and with a commission on the horizon I need to find a simpler and more flexible approach to communication between custom hardware and the Raspberry Pi – mainly one that doesn’t require so many wires.

i2c is a serial communication standard used by all kinds of components from sensors to LCD displays. The Raspberry Pi comes with it built in, as the Linux kernel supports it along with various tools for debugging. I also have some Atmel processors from a previous project and there is quite a bit of example code for them. I thought I would post a little account of my troubleshooting on this for others that follow the same path, as I feel there is a lot of undocumented knowledge surrounding these slightly esoteric electronics.

The basic idea of i2c is that you can pass data between a large number of independent components using only two wires to connect them all. One is for data, the other is for a clock signal used for synchronisation.

Debugging LEDs
Debugging LEDs

I started off with the attiny85 processor, mainly as it was the first one I found, along with this very nice and clear library. I immediately ran into a couple of problems, one was that while it has support for serial communication built in (USI) you have to implement i2c on top of this so your code needs to do a lot more. The second was with only 8 pins the attiny85 is not great for debugging. I enabled i2c on the Raspberry Pi and hooked it up, ran i2cdetect – no joy. After a lot of fiddling around with pull up resistors and changing voltages between 3 and 5v either no devices were detected, or all of them were, all reads returning 0 (presumably logic pulled high for everything) or noise – nothing seemed to make any difference.

After a while (and trying other i2c slave libraries to no avail) I switched to an atmega328 processor using this library which includes a Makefile! One thing that I’ve noticed that would make things much easier for learning this stuff is more complete toolchains in example code including the right #defines and fuse settings for the processor. However this code didn’t work either at first, and my attempts at using debugging LEDs on PORTB didn’t work until I figured out it was conflicting with the UART i/o used in the example code – after figuring out that this wasn’t part of the i2c code I removed it and the Raspberry Pi could at last see the device with i2cdetect. With the addition of some LEDS I could check that bytes being sent were correctly being written to the internal buffer at the correct addresses.

It finally works!
It finally works!

Reading was another matter however. Most of the time i2cget on the Pi failed, and when it did work it only returned 0x65 no matter what the parameters. I’d already read extensively about the Raspberry Pi’s i2c clock stretching bug and applied various fixes which didn’t seem to make any difference. What did the trick was to remove the clock divide on the atmega’s fuses – by default it runs at 8Mhz but slows the instruction cycles to 1Mhz – without that it could keep up with the Pi’s implementation and all reads were successful. I still had to solve the ‘0x65 problem’, and went into the i2c code to try and figure out what was going on (using 8 LEDs to display the i2c status register). It seems like reading single bytes one at a time is done by issuing a TW_ST_DATA_NACK as opposed to TW_ST_DATA_ACK, as it sends a not-acknowledged for the last byte read. This state is not supported by the library, after fiddling around with it a bit I switched over on the Pi’s side to using the python smbus library, and tried using read_i2c_block_data – which reads 32 bytes at a time. The first byte is still 0x65 (101 in decimal, in the photo above) – but the rest are correct, I’ll need to read a bit more on the i2c protocol to figure that one out (and get the attiny working eventually), but at least it’s enough for what I need now.

Handy collection of pinouts
Handy collection of pinouts