Tag Archives: archeology

A cryptoweaving experiment

Archaeologists can read a woven artifact created thousands of years ago, and from its structure determine the actions performed in the right order by the weaver who created it. They can then recreate the weaving, following in their ancestor’s ‘footsteps’ exactly.

This is possible because a woven artifact encodes time digitally, weft by weft. In most other forms of human endeavor, reverse engineering is still possible (e.g. in a car or a cake) but instructions are not encoded in the object’s fundamental structure – they need to be inferred by experiment or indirect means. Similarly, a text does not quite represent its writing process in a time encoded manner, but the end result. Interestingly, one possible self describing artifact could be a musical performance.

Looked at this way, any woven pattern can be seen as a digital record of movement performed by the weaver. We can create the pattern with a notation that describes this series of actions (a handweaver following a lift plan), or move in the other direction like the archaeologist, recording a given notation from an existing weave.

example
A weaving and its executable code equivalent.

One of the potentials of weaving I’m most interested in is being able to demonstrate fundamentals of software in threads – partly to make the physical nature of computation self evident, but also as a way of designing new ways of learning and understanding what computers are.

If we take the code required to make the pattern in the weaving above:

(twist 3 4 5 14 15 16)
(weave-forward 3)
(twist 4 15)
(weave-forward 1)
(twist 4 8 11 15)

(repeat 2
 (weave-back 4)
 (twist 8 11)
 (weave-forward 2)
 (twist 9 10)
 (weave-forward 2)
 (twist 9 10)
 (weave-back 2)
 (twist 9 10)
 (weave-back 2)
 (twist 8 11)
 (weave-forward 4))

We can “compile” it into a binary form which describes each instruction – the exact process for this is irrelevant, but here it is anyway – an 8 bit encoding, packing instructions and data together:

8bit instruction encoding:

Action  Direction  Count/Tablet ID (5 bit number)
0 1         2              3 4 5 6 7 

Action types
weave:    01 (1)
rotate:   10 (2)
twist:    11 (3)

Direction
forward: 0
backward: 1

If we compile the code notation above with this binary system, we can then read the binary as a series of tablet weaving card flip rotations (I’m using 20 tablets, so we can fit in two instructions per weft):

0 1 6 7 10 11 15
0 1 5 7 10 11 14 15 16
0 1 4 5 6 7 10 11 13
1 6 7 10 11 15
0 1 5 7 11 17
0 1 5 10 11 14
0 1 4 6 7 10 11 14 15 16 17
0 1 2 3 4 5 6 7 11 12 15
0 1 4 10 11 14 16
1 6 10 11 14 17
0 1 4 6 11 16
0 1 4 7 10 11 14 16
1 2 6 10 11 14 17
0 1 4 6 11 12 16
0 1 4 7 10 11 14 16
1 5

If we actually try weaving this (by advancing two turns forward/backward at a time) we get this mess:

close

The point is that (assuming we’ve made no mistakes) this weave represents *exactly* the same information as the pattern does – you could extract the program from the messy encoded weave, follow it and recreate the original pattern exactly.

The messy pattern represents both an executable, as well as a compressed form of the weave – taking up less space than the original pattern, but looking a lot worse. Possibly this is a clue too, as it contains a higher density of information – higher entropy, and therefore closer to randomness than the pattern.

Unravelling technology in Copenhagen

Last week the weavingcodes/codingweaves project started with a trip to Denmark, our first stop was the Centre for Textiles Research in Copenhagen where we presented the project and gathered as much feedback as possible right at the beginning. The CTR was introduced to us by Eva Andersson Strand, and is an interdisciplinary centre which focuses on the relationships between textiles, environment and society.

IMG_20141006_150755

This long-view perspective of technology is critical for us, as we are dealing with a combination of thinking in the moment via livecoding and a history of technology dating back to the neolithic. This is a warp weighted loom, the focus of much of Ellen Harlizius-Klück’s research and the technology we are going to be using for the project.

IMG_20141007_114259959

Weights like this are widespread in the archaeological record for many cultures around the world, with the earliest ones around 5000 BC. Similarly – a post-it note including a handy cuneiform translation:

IMG_20141007_165613

Alex talked about livecoding as a backwards step, removing the interface – thinking about it as an unravelling of technology. His introduction to Algorave led to many connections later when Giovanni Fanfani described the abstract rhythmic patterns of Homeric rhapsodic poetry. These were performed by citizens, in a collaborative and somewhat improvised manner – the structures they form musically and in language are potentially of interest as they seem to echo the logic of weaving pattern.

IMG_20141006_143209

Ellen described her research into tacit knowledge of ancient Greek society – how weaving provided thinking styles and ordering concepts for the earliest forms of mathematics and science which is the basis for much of the weavingcodes project. One additional theme that has come up fairly consistently is cryptography – Flavia Carraro’s description of ‘The Grid in the decipherment of the Linear B writing system: a “paper-­‐loom”?’ was another addition to this area.

Emma Cocker talked about Peneolopeian time – constant weaving and unravelling as a subversive act, and the concept of the kairos, as a timely action – the name given to the point at which the weft is made when the warp ‘shed’ is provided, as well as a part of the warp weighted loom. Her input was to provide a broader view to our explorations (as coders, weavers and archaeologists all tend to get caught up in technical minutiae from time to time). From our discussions it was apparent that one of the strongest connections between livecoding and ‘weaving as thought’ is a subversion of a form of work that is considered by the dominant culture as entirely utilitarian.