
Game Pad Live Coding Performance
Dave Griffiths www.pawfal.org/dave
v1.2

This document is adapted from an article from the
following publication, redistributed with kind permission.

Birringer, Johannes/Dumke, Thomas/Nicolai, Klaus (eds.)
(2007), Die Welt als virtuelles Environment, published by
order of TMA Hellerau,
Dresden.
ISBN: 3-9810247-2-9
Ordering information:
http://shop.extended.org

Introduction

In recent years “live coding” has emerged as a practice of
improvised musical and visual performance. Watching
programming seems an unlikely thing to do whilst
listening to music or watching a performance, but it’s
proving popular as a way of reconnecting the computer
performer with their audience.

Game interfaces can also provide flexible new ways of
interacting with software, and the rich metaphors,
techniques and hardware developed for game playing are
waiting to be used for new purposes.

Two new live coding languages, “Betablocker” and “Al
Jazari” have been developed to bring together these ideas
to make live coding more accessible and moving it away
from the realms of traditional programming.

Live Coding

Live coding is generally understood to be writing code in
front of an audience, and has partly come about as a
reaction to existing laptop performance, which has a
tendency to hide the performers actions away, leading to a
disconnection of performer and their audience. Such a
disconnection is apparent in contrast to performances
with traditional instruments.

For this reason, the projecting of screens during
performances is an important aspect of live coding. It
must be stressed that, although programming code is
projected, it is considered enough that the audience
understand that something is being created in front of
them, and relate the changes in the output with the
changes of the structure of the visible code – a literal
understanding of the code is not important.

Live Coding History

The essence of live coding is rule writing and modification
at the same time as the rules being carried out. This
doesn’t necessarily have to be realized using a computer,
and some offshoots of live coding research are dealing
with the possibilities of rule based choreography acted
out by human participants capable of rewriting their own
rules.[1]

Some of the precedent for live coding comes from
experiments of this nature in the 60s and 70s (and
probably long before that). The first recorded live coding
on computer was done by Ron Kuivila in 1985 at STEIM.
Another group live coding at this time were the Hub[2]
who programmed Forth during live performances and

http://www.pawfal.org/
http://shop.extended.org/
http://shop.extended.org/
http://shop.extended.org/
http://www.pawfal.org/
http://www.pawfal.org/

encouraged audience members to look at what they were
doing as part of the performance.

TOPLAP (see below) is always looking for early references
to live coding performance, so let them know if you know
of any similar work.

We now have to jump nearly 20 years to find the next
forms of live coding, as computer technology enabled the
rise of portable laptops with CPUs powerful enough to
process audio or video. The audio synthesiser software
“SuperCollider” brought a high level language with sound
processing capability to the fore, and gigs around 2000 by
James Mc Cartney, Julian Rohrhuber, Nick Collins, Fredrik
Olofsson and Fabrice Mogini started to incorporate
elements of code improvisation.

At the same time, London based group “slub” were
introducing elements of live coding using home made
terminal based networked software for collaborative
music making. On the other side of the Atlantic, Ge Wang
and Perry Cook were developing “ChucK,” a highly
malleable language and environment for “on the fly” audio
and graphics programming.

TOPLAP

According to the official histories, some members of this
embryonic live coding community were attending the
“Changing Grammars” symposium at the HFBK (Hamburg
Academy of Fine Arts[3]). At 1am on Sunday 15th
February 2004, in a smoky Hamburg bar TOPLAP[4] was
formed (a Temporary Organisation for the Promotion of
Live Algorithm Programming) in order to promote and
cement the ideas of live coding. Later that day, on a

Ryanair transit bus from Hamburg to Lübeck, the TOPLAP
manifesto was born:

We the digitally oversigned demand:
 Give us access to the performer's mind, to the whole

human instrument.
 Obscurantism is dangerous. Show us your screens.
 Programs are instruments that can change

themselves
 The program is to be transcended - Language is the

way.
 Code should be seen as well as heard, underlying

algorithms viewed as well as their visual outcome.
 Live coding is not about tools. Algorithms are

thoughts. Chainsaws are tools. That's why
algorithms are sometimes harder to notice than
chainsaws.

We recognize continuums of interaction and profundity,
but prefer:

 Insight into algorithms
 The skillful extemporization of algorithm as an

impressive display of mental dexterity
 No backup (minidisc, DVD, safety net computer)

We acknowledge that:
 It is not necessary for a lay audience to understand

the code to appreciate it, much as it is not
necessary to know how to play guitar in order to
appreciate watching a guitar performance.

 Live coding may be accompanied by an impressive
display of manual dexterity and the glorification of
the typing interface.

 Performance involves continuums of interaction,

mailto:Fredrik Olofsson <f@fredrikolofsson.com>
mailto:Fredrik Olofsson <f@fredrikolofsson.com>
mailto:Fredrik Olofsson <f@fredrikolofsson.com>
mailto:Fredrik Olofsson <f@fredrikolofsson.com>
mailto:Fredrik Olofsson <f@fredrikolofsson.com>
mailto:Fredrik Olofsson <f@fredrikolofsson.com>
mailto:Fredrik Olofsson <f@fredrikolofsson.com>
mailto:Fredrik Olofsson <f@fredrikolofsson.com>
mailto:Fredrik Olofsson <f@fredrikolofsson.com>

covering perhaps the scope of controls with respect
to the parameter space of the artwork, or gestural
content, particularly directness of expressive detail.
Whilst the traditional haptic rate timing deviations
of expressivity in instrumental music are not
approximated in code, why repeat the past? No
doubt the writing of code and expression of thought
will develop its own nuances and customs.

Performances and events closely meeting these manifesto
conditions may apply for TOPLAP approval and seal.

A website and mailing list were founded and the fledgling
community of live coders began. Now live coding had
become more clearly defined with some core values.

Programming as thought process

One of the interesting elements to have arisen from the
TOPLAP manifesto is contained within the lines:

"The program is to be transcended - Language is the
way." and "Live coding is not about tools. Algorithms are
thoughts. Chainsaws are tools. That's why algorithms are
sometimes harder to notice than chainsaws."

Which interestingly, draws parallels with Abelson &
Sussman's famous textbook, “The Structure and
Interpretation of Computer Programming”[5]:

"Programs must be written for people to read, and only
incidentally for machines to execute."

This highlights an often misunderstood facet of
programming, that it doesn’t directly concern computers

at all, but is mainly used as a communication tool for the
programmer to understand what they are constructing, in
order to debug and reuse their work later – or for other
programmers to pick up, use and understand.

Programming languages also communicate something
more subtle, which is a way of thinking, or a space for
solving problems. Different programming languages offer
different philosophies, or solutions to the problem of
solving problems, with broad categories like “object
orientation,” “functional,” “imperative” or “declarative,”
and many subcategories and styles making up the range
of languages available today. This goes some way to
explaining why programmers get very attached to
languages they know – as it can be difficult to think about
problems in a different way, after the many years required
to learn a language well.

Live coding languages are generally “high level
languages.” These closely exhibit Abelson & Sussman’s
observation as they are designed to be easy for a human
to use, rather than a computer to run. Due to the nature
of live coding, these languages also tend to be run in
specially designed environments, or editing applications,
which allow the code to be running at all times, with edits
being incorporated into the running program in various
ways (so as not to interrupt the flow of the process). Here
are some example environments and the languages they
use:

Environment Medium Language

SuperCollider Primarily music,
some visuals

Specially designed language
based on Smalltalk and C

Impromptu Primarily music,
some visuals

Scheme

Feedback.pl Music Perl

ChucK Music and visuals Specially designed language
"ChucK"

Fluxus Primarily visuals Scheme

Thingee Visuals Specially designed language
based on lingo

Quoth Music Natural langauge parsing

Pure Events Music Specially designed language

As shown above, a lot of live coding environments are
neither wholly restricted to audio or visual, and this
exposes an interesting feature of live coding – it tends to
blur the distinctions between different media. A good
musical live coder will find it easy to transfer their ability
to write music generating code to that of movements of
shapes and colours. In the same way, a visual live coder
will be tempted to try their hand at triggering sounds
instead of visual events.

In a deeper way, the same lines of code can be used to
simultaneously control the audio and visual, leading to
exciting new possibilities in integrating and controlling
the two in an improvised manner during a performance.

Malleability of code

The structure and interpretation of computer programs
also contain this quote from John Locke in “An Essay
Concerning Human Understanding” (1690):

"The acts of the mind, wherein it exerts its power over
simple ideas, are chiefly these three: 1. Combining
several simple ideas into one compound one, and thus all
complex ideas are made. 2. The second is bringing two
ideas, whether simple or complex, together, and setting
them by one another so as to take a view of them at once,
without uniting them into one, by which it gets all its
ideas of relations. 3. The third is separating them from all
other ideas that accompany them in their real existence:
this is called abstraction, and thus all its general ideas are
made."

One of the advantages of programming as a performance
is that it is possible to quickly make sweeping changes to
the output during live coding. This is about the
expressivity of a language.
Programming languages allow you to “abstract” ideas into
components which are shared between different sections
of the code. Changes to core components are reflected
everywhere simultaneously, amplifying the effect of the
programmer in ways they can control.

The simplest example of this is the use of a global
variable. A variable is a way of naming a value, for
instance a programmer can in one place define 3 to the
name “size.” The programmer has abstracted 3 with the
concept of size and given it a meaning. The size variable
maybe referenced in many places, so changing it’s value

at the one definition later on will take effect everywhere it
has been used.

This kind of abstraction can be applied to processes too –
where sequences of operations can be named and reused
in many places. Once we start layering these abstractions
on top of each other, we get a description of a process
which is very easy to control and change in predicable
and expressive ways. This is one way a live coder can
keep the pace needed for an engaging performance.

Fluxus and live coding in Scheme

The live coding language/environments described later on
are written in fluxus. This is potentially confusing, as
fluxus is itself a live coding environment in its own right.

As mentioned above, fluxus is live coded in Scheme, which
is a language dating back to 1975 when it was invented by
Jerald J. Sussman and Guy L. Steel Jr. Scheme is a dialect
of "Lisp" which is one of the first programming languages
to be invented, and dates back to the 1950's.

Fluxus is, in essence a 3-D graphics engine, similar to one
you would find inside a 3-D computer game. It extends the
language of Scheme with commands for describing three-
dimensional scenes to a computer’s graphics card, and
contains features normally found in modern computer
games, such as a selection of geometry types, the ability
to control surface appearance with textures or hardware
shaders, and rigid body dynamics for physics simulations.
Fluxus also includes functionality for audio input (for
controlling animations with sound) and network IO using
the popular Open Sound Control format. It is free
software, available under the GLPv2 licence for Linux and

OSX. Version 0.1 was released Tuesday, August 5th 2003
at 17:29.

Fluxus also comes with a live coding interpreter, utilising
PLT Scheme’s[6] mzscheme – allowing you to see the code
“float” above the graphics as you create them. This makes
fluxus useful as a rapid prototyping tool for learning or
playing with 3-D animation.

The main focus of fluxus’s interface is for live coding
though, and Scheme is a good candidate for a live coding
language. It has a very concise and elegant style, meaning
that it takes very little effort (in terms of key presses or
amount of text) to come up with interesting results.

(define (render) ; makes a function called "render"
 (scale (gh 1) (gh 3) (gh 9)) ; scale using harmonics from the sound
 (draw-cube)) ; draw a cube - which takes on the scale set above

(every-frame (render)); every frame call render

An example fluxus script to squash and stretch a cube in
time to the music.

Keyboards

The TOPLAP manifesto talks of “glorification of the typing
interface,” and clearly for a programmer, text editors and
keyboards are of fundamental importance. However,
keyboards and other peripheral devices commonly used
by programmers are responsible for physical ailments
such as RSI and Carpal tunnel syndrome. Should we really
be glorifying something which can do us harm in this way
– or should we be looking for something different?

Visually programmed, largely mouse controlled languages

such as Pure Data and MAX/MSP are valuable to people
who are not so attached to their text editor. Some recent
developments in visual programming languages are
making them possible for live coding [7] but still the
mouse and keyboard is the prevalent input method.

The languages we are using for live coding are not
generally designed for purpose, and while employing
languages meant for slow careful construction of software
for ad hoc improvisation adds to the spectacle of live
coding – it seems there is space for exploration.

Programming games

Computer game input devices provide readily accessible
hardware for experimentation. One notable example of
this is Amy Alexander's Thingee[8], which can be
programmed using a dance mat. Also, programming
environments which use the visual language of computer
games allows live coding to appeal to wider audiences.
There are some precedents for programming forming part
or the entirety of a game play mechanic. I will cover two
such examples here.

Corewars

Corewars[9] is a game where player/programmers write
programs which battle with each other inside a virtual
machine (known as the core). A virtual machine is a
program which mimics another (possibly fictional or real)
device. They are wholly contained within the program
which “virtualizes” them, and so are safe places to do
things which couldn’t be done with a real hardware
device.

The players use a form of assembly language called
“Redcode.” The programs all read and write to the same
memory space, and must try to destroy all other programs
by writing over their code, the player who writes the
program which eventually takes over the whole machine
wins.

The simplest redcode program which can be used in this
way is called the "Imp":

MOV 0, 1

This one instruction program simply means “copy myself
to the next instruction” the next instruction is
automatically run next, repeating the process until all the
memory has been written to. More sophisticated
programs will “bomb” memory by writing to it in
calculated patterns in order to be more destructive for
other programs, or jump into each other's code for
parasitic strategies.

Carnage Heart

Carnage Heart[10] is a
Japanese Playstation
game developed in
1995. The player has to
program robots for
battle using a visual
language akin to a flow
diagram. In this way, the
robots (known as
“OverKill Engines”)
cannot be controlled

Illustration 1: A carnage heart OKE
program, courtesy of Wikipedia

once battle has been started – the player has defined the
behavior and ultimate success of the robot entirely in
their program.

Gamepad live coding

Taking these and other games as influence, Betablocker
and Al Jazari are languages written in Scheme for fluxus
which can be programmed using a game pad only – no
other input device is required during performance. This in
itself is an interesting restriction, and requires a specially
designed language and a usable interface mechanic to
allow code to be written. These projects also focus on the
visual aspect of live coding, and make more of an attempt
to make the code interesting to the audience than simply
a text display would.

Ring menus

These interface
elements are key to
making game pad live
coding possible. They
allow items to be
selected from a large
range of options, and
also utilise “muscle
memory” in
remembering the
direction of different
selections. They only
need the use of one analogue stick, which can be used
both to activate and operate the menu. Game pad
shoulder buttons are also used to determine and switch
between different menu types.

Betablocker

Betablocker was the first attempt at a game pad
programmable live coding system in fluxus. It was
inspired by a discussion on the TOPLAP mailing list about
virtual machines, and also visually by games such as “Mr
Driller,” in terms of colourful blocks interacting with each
other and setting up chain reactions as a game mechanic.

The program is a virtual machine running inside fluxus. It
visualizes the simulation of a fictional CPU with 256 bytes
of memory, and allows multiple threads of execution to be
run sharing the same address space. The Betablocker
language is very much based on the ideas in Core Wars,

Illustration 2: Al Jazari's programming
ring menu

Illustration 3: A betablocker screenshot

but Betablocker also visualizes the threads of execution.
This is different to other live coding
language/environments, as the process itself as well as
the code and entire contents of memory are visible.

Betablocker programs never crash – this means that while
the virtual machine is running, they will never stop
executing. Crashes and exceptions are important in most
situations as they prevent unintended code from being
run, which is usually essential, preventing dangerous
things from happening. Uncrashable languages are used
in situations where this isn’t important, usually safely as
virtual machines – for applications such as genetic
programming. To make this possible, instructions are able
to return arbitrary values for invalid input (divide by zero,
or referencing non-existent memory) so programs keep on
running even if an error has been detected.

A performance of Betablocker consists of writing
instructions and data to the memory cells with a game
pad, which is used to navigate memory with the direction
buttons, and select instructions with a ring menu using
the analogue sticks. Instructions are included to trigger
sounds, and change instruments for each thread. Small
pre-written library code segments can also be loaded in
and pasted over memory using more ring menus.

As programs run, they can write over each other, or
modify themselves. Although Betablocker is deterministic
(there are no calls to random functions) this generally
results in a chaotic situation after a few threads of
instructions have begun running. As they will never crash,
these threads will run off the end of their programs if they
do not loop, and run through memory executing anything

they find.

Al Jazari
Ibn Ismail ibn al-Razzaz al-Jazari[11] was an influential
scholar and engineer who lived at the beginning of the
13th century. Along with inventing and making detailed
plans for many currently used mechanical devices (the
crankshaft, mechanical clocks, combination locks,
segmental gears and valves to name a few) he also
worked on plans for automatons and humanoid robots.
The robots he designed were intended to be used for
playing music at royal drinking parties.

This project was inspired and named after Al Jazari and
the idea of live coding robots for royal drinking parties. It
also has elements of the computer game “The Sims” – the
idea of instructions and states visible floating above a
characters head. Also Gullibloon’s “Army of
Darkness”[12], a robotic installation piece, where robots
chaotically explore an environment which happens to be
populated by strategically positioned electric guitars.

Illustration 4: The gamepad layout for betablocker

Al Jazari was developed for audiences who may not be
expecting to witness live coding. It was premièred and
developed during a series of events called “Ravage me
Savagely”[13] at a pub in London’s New Cross, in which
laptop performances were inserted between rock and
punk bands.

Playing Al Jazari is similar to Betablocker, as it uses the
direction buttons to navigate a grid, this time in isometric
projection as well as flat grids. Again, ring menus are
used for inserting instructions. New robots are placed on
the isometric grid and then programmed by writing code
in their “thought bubbles.” The instructions command the

robot to move, turn, trigger signals or inspect their local
space and conditionally execute further instructions. The
musical events are generated in an indirect manner,
triggers can be placed on the isometric grid, which are
activated when a robot moves over the trigger. Robots
cannot exist in the same grid positions and will block or
move each other out of the way.

Both these programs/languages are designed to be
synched with other systems for network performances,
usually other live coding languages for collaborative
performances as part of the “slub” live coding group.

Conclusions

Betablocker and Al Jazari are simple languages designed
for live use. Betablocker is heavily inspired by existing
languages (it’s more of a novel visualisation and
interaction experiment) and although it’s designed to look
different, using Al Jazari is the same as programming
other languages – robots can be programmed to follow or
avoid each other, send messages and generally exhibit

Illustration 5: Al Jazari in action
Illustration 6: The gamepad layout for Al Jazari

complex behavior. They both rely on small programs
interacting with each other to provide the amplification of
effort, and result in controllable, but difficult to predict
situations.

The use of a game pad allows the performer to leave the
confines of the screen and keyboard, and means the
computer is less of a central point compared to other
laptop performances. The only objects you need to
interact with live are the game pad and projection.

The language is the instrument when coding live, and the
advantage of developing a language specifically for live
coding is that it can be influenced in response to
performance practice. There is much work to do in finding
the correct balance between simplicity and complexity
when considering the pressures of live performance. Live
coding languages need to avoid unnecessary detail while
keeping interesting possibilities open.

Links and references

[1] Non-computer live coding:
http://www.toplap.org/index.php/Live_Coding_Without_Co
mputers

[2] The Hub: http://hub.artifact.com/
[3] Hamburg Academy of Fine Arts
http://www.hfbk-hamburg.de/
[4] TOPLAP: http://www.toplap.org
[5] Structure and Interpretation of Computer Programs:
http://mitpress.mit.edu/sicp/
[6] PLT Scheme: http://www.plt-scheme.org/

[7] Desire Data: https://devel.goto10.org/desiredata is a
variant of Pure Data which includes support for live
coding. Robert Atwood http://robert.lurk.org/ was the first
person to use it in a live coding performance at the LOSS
livecode festival 2007 http://livecode.access-space.org/
[8] Amy Alexander's (VJ Übergeek) site
http://plagiarist.org/
[9] Core wars homepage: http://www.corewars.org/
[10] Carnage heart fan site:
http://www.carnageheartdepot.blogspot.com/
[11] More on Al Jazari here:
http://en.wikipedia.org/wiki/Al-Jazari
[12] The army of darkness
http://gullibloon.org/mediawiki/index.php/Gbot
[13] Ravage me savagely
http://www.myspace.com/ravagemesavagelynights

More articles on livecoding can be found on the TOPLAP
wiki:
http://www.toplap.org/index.php/ToplapPapers

Slub: http://slub.org/
Fluxus: http://www.pawfal.org/Software/fluxus/
Al Jazari:
http://www.pawfal.org/index.php?page=BetaBlocker
Betablocker: http://www.pawfal.org/al-jazari

http://www.myspace.com/ravagemesavagelynights
http://www.pawfal.org/al-jazari
http://www.pawfal.org/al-jazari
http://www.pawfal.org/al-jazari
http://www.pawfal.org/index.php?page=BetaBlocker
http://www.pawfal.org/index.php?page=BetaBlocker
http://www.pawfal.org/index.php?page=BetaBlocker
http://www.pawfal.org/Software/fluxus/
http://www.pawfal.org/Software/fluxus/
http://www.pawfal.org/Software/fluxus/
http://slub.org/
http://slub.org/
http://slub.org/
http://www.toplap.org/index.php/ToplapPapers
http://gullibloon.org/mediawiki/index.php/Gbot
http://en.wikipedia.org/wiki/Al-Jazari
http://en.wikipedia.org/wiki/Al-Jazari
http://en.wikipedia.org/wiki/Al-Jazari
http://www.carnageheartdepot.blogspot.com/
http://www.carnageheartdepot.blogspot.com/
http://www.carnageheartdepot.blogspot.com/
http://www.corewars.org/
http://www.corewars.org/
http://www.corewars.org/
http://plagiarist.org/
http://plagiarist.org/
http://plagiarist.org/
http://livecode.access-space.org/
http://livecode.access-space.org/
http://livecode.access-space.org/
http://robert.lurk.org/
http://robert.lurk.org/
http://robert.lurk.org/
https://devel.goto10.org/desiredata
https://devel.goto10.org/desiredata
https://devel.goto10.org/desiredata
http://www.plt-scheme.org/
http://www.plt-scheme.org/
http://www.plt-scheme.org/
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://mitpress.mit.edu/sicp/
http://www.toplap.org/index.php/Main_Page
http://www.toplap.org/index.php/Main_Page
http://www.toplap.org/index.php/Main_Page
http://www.hfbk-hamburg.de/
http://hub.artifact.com/
http://hub.artifact.com/
http://hub.artifact.com/
http://www.toplap.org/index.php/Live_Coding_Without_Computers
http://www.toplap.org/index.php/Live_Coding_Without_Computers
http://www.toplap.org/index.php/Live_Coding_Without_Computers
http://www.toplap.org/index.php/Live_Coding_Without_Computers
http://www.toplap.org/index.php/Live_Coding_Without_Computers
http://www.toplap.org/index.php/Live_Coding_Without_Computers

	Game Pad Live Coding Performance
	Introduction
	Live Coding
	Live Coding History
	TOPLAP
	Programming as thought process
	Malleability of code
	Fluxus and live coding in Scheme
	Keyboards
	Programming games
	Corewars
	Carnage Heart

	Gamepad live coding
	Ring menus
	Betablocker

	Conclusions
	Links and references

