
Fluxus: Scheme Livecoding

Dave Griffiths

1



Overview

• Fluxus introduction

• What it's built from

• Why Scheme

• Livecoding

• How it works - some examples

• Functional Reactive Programming

• Gamepad Livecoding

2



What is fluxus?

• Framework for various things:

Playing/learning about graphics

Workshops

Performances

Art installations

• Game engine at heart...

• With a livecoding editor

• Uses PLT Scheme

• Source released under GPL

• 4 or 5 developers working on it

• Builds on Linux and sometimes
OSX

3



Quick demo

4



I use fluxus for...

5



Live coding graphics, using live audio input

6



Live coding graphics and audio at the same time

7



As a framework for developing new livecoding languages

8



slub

9



What's inside?

10



Boring Feature List
• Immediate mode drawing

• Scenegraph

• Primitives

Polys

Particles

NURBS patches

Blobbies (implicit surfaces)

Pixels (procedural texture access)

• Unified access to primitive data
(vertex arrays, texture data)

• More advanced stuff

GLSL Hardware shading

ODE physics

Shadows

Skinning/Skeletons

• Audio synthesis

11



Architecture

12



DrScheme integration

13



DrScheme integration

14



DrScheme integration

• Much better editor

• Debugger

• Profiler

• Syntax highlighting

• Less control over OpenGL

No GLSL shader support

No stencilmap shadows

Slower

• Not suitable for livecoding
performance

15



Why Scheme?

16



Fluxus philosophy

• 'Creative' code in Scheme

• OpenGL grunt work in C++

17



Scheme for creative code

• Fast feedback (use an interpreter)

• Expressive power

• Few keypresses needed to get
interesting results

Functional roots

Use of macros to shape the
language

Dynamic typing

• Lots of interesting research going
on with Scheme

18



Livecoding

19



Livecoding

• Performance programming

• Mainly a musical field

• Reaction against the normal laptop
performance

• Showing the audience what you're
doing

20



TOPLAP

• Formed Feburary 2004 in a
smokey Hamburg bar

• Now grown to 100's of livecoders

• Role is to promote live coding as a
unique art form

21



TOPLAP MANEFESTO

We demand:

• Give us access to the performer's mind, to the whole human instrument.

• Obscurantism is dangerous. Show us your screens.

• Programs are instruments that can change themselves.

• The program is to be transcended - Artificial language is the way.

• Code should be seen as well as heard, underlying algorithms viewed as well as their visual outcome.

• Live coding is not about tools. Algorithms are thoughts. Chainsaws are tools. That's why algorithms are
sometimes harder to notice than chainsaws.

We recognise continuums of interaction and profundity, but prefer:

• Insight into algorithms

• The skillful extemporisation of algorithm as an expressive/impressive display of mental dexterity

• No backup (minidisc, DVD, safety net computer)

We acknowledge that:

• It is not necessary for a lay audience to understand the code to appreciate it, much as it is not necessary
to know how to play guitar in order to appreciate watching a guitar performance.

• Live coding may be accompanied by an impressive display of manual dexterity and the glorification of the
typing interface.

• Performance involves continuums of interaction, covering perhaps the scope of controls with respect to
the parameter space of the artwork, or gestural content, particularly directness of expressive detail. Whilst
the traditional haptic rate timing deviations of expressivity in instrumental music are not approximated in
code, why repeat the past? No doubt the writing of code and expression of thought will develop its own
nuances and customs.

22



Livecoding & Fluxus

• Fluxus is part of the livecoding
movement

• People using it for performance
('no copy paste' from Budapest)

• Fluxus/Supercollider Workshop at
the LOSS Livecoding festival in
Sheffield

• The movement has greatly
influenced fluxus development

23



Some other livecoding systems

24



Impromptu

25



SuperCollider

26



ChucK

27



Fluxus code

28



Scene description

• Describing 3D scene and
behaviours

• Simple example:

(define (draw-my-scene)
(draw-cube))

(every-frame (draw-my-scene))

29



Scene description

• It's essentially a state machine:

(translate (vector 0 1 0))
(scale (vector 0.1 0.1 2))
(rotate (vector 45 0 0))
(colour (vector 1 0 0))
(texture (load-texture "brick.png"))
(shader "blinn.vert.glsl" "blinn.frag.glsl")
(draw-cube)
...
(draw-sphere)
(draw-torus)

30



Example Demos

31



Mutable state

• Everything so far relies on mutable
state

• Some of this is for performance

• Conventional way of using scene
graphs

Init step: build scene graph

Every frame step: update scene
graph

• Complexity starts to bite with big
scenes

• Is there a better way?

32



Functional Reactive Programming

• Applying declarative programming
for reactive systems

• First class behaviours and events

• Examples:

Fran - Functional reactive
animation (Haskell)

Yampa - Haskell

Flapjax - Javascript

FrTime - PLT Scheme

• Avoids the complexity of state
machines for behaviour

• More scalable

• Starting to be looked at here and
there for games

33



Frisbee

• FRP in fluxus

• Based on FrTime - by Gregory
Cooper

• Trying to build a game engine on
top of FrTime

• Could be a more expressive
language for fluxus

• Easier to teach game programming

• Increase what is possible while
livecoding

34



Frisbee disclaimers

• Frisbee is very much work in
progress

• FrTime is still undergoing
optimisation work

• A few glitches still

• We're working on it...

35



Frisbee Demo

36



Gamepad Livecoding

37



Gamepad Livecoding

• Make watching live coding a bit
more accessible

• Live coding doesn't have to be
about text editors

• Live coding doesn't have to be
hard

• Making fun, simplified languages

38


